US009329888B2

a2 United States Patent

(10) Patent No.: US 9,329,888 B2

Dow et al. (45) Date of Patent: May 3, 2016
(54) COMPUTING OPTIMIZED VIRTUAL (56) References Cited
MACHINE ALLOCATIONS USING
EQUIVALENCE COMBINATIONS U.S. PATENT DOCUMENTS
(71) Applicant: International Business Machines §752600 Bie 3014 Hyseraal B
Corporation, Armonk, NY (US) 2010/0262964 Al 10/2010 Uyeda et al.
2010/0262974 Al 10/2010 Uyeda
(72) Inventors: Eli M. Dow, Poughkeepsie, NY (US); 2011/0302578 Al 12/2011 Iscietal.
James P. Gilchrist, Poughkeepsie, NY (Continued)
(US); Steven K. Schmidt, Essex
Junction, VT (US); Charles J. Stocker, OTHER PUBLICATIONS
Plainsboro, NI (US) “IO Tetris: Deep Storage Consolidation for the Cloud via Fine-
(73) Assignee: INTERNATIONAL BUSINESS Grained Workload Analysis,” Cloud Computing (CLOUD), 2011
MACHINES CORPORATION, IEEE International Conference on, pp. 700,707, Jul. 4-9, 2011.*
Armonk, NY (US) (Continued)
(*) Notice: Subject. to any disclaimer,. the term of this Primary Examiner — Jason Recek
patent is extended or adjusted under 35)
U.S.C. 154(b) by 425 days. (74) Azzgr.ney, Agent, or Firm — Cantor Colburn LLP;
Steven Chiu
(21) Appl. No.: 13/751,416
57 ABSTRACT
(22) Filed: Jan. 28, 2013 A method for determining allocation of virtual machines
. L includes: at least one of generating and accessing a list of
(65) Prior Publication Data virtual machines (VMs) configured to run on a network, each
US 2014/0215073 Al Jul. 31, 2014 VM having at least one network resource requirement, each
VM in the list associated with a size of the at least one network
(51) Int.CL resource requirement; selecting at least one equivalence set of
GOG6F 15/173 (2006.01) VMs having a resource requirement size that is at least sub-
GO6l" 9/455 (2006.01) stantially identical; generating a plurality of meta-combina-
HO4L 29/08 (2006.01) tions from the at least one equivalence set of VMs, each
GO6l' 9/50 (2006.01) meta-combination representing all possible combinations of
(52) US.CL a selected number of individual VMs from the equivalence
CPC ... GOG6F 9/45558 (2013.01); GOGF 9/5077 set; determining a maximum resource capacity of a node in
(2013.01); HO4L 67/10 (2013.01); GOG6F the network; and providing a meta-combination assignment
2009/4557 (2013.01); YO2B 60/142 (2013.01); to the node, the meta-combination assignment including a
Y028 60/167 (2013.01) group of meta-combinations having a cumulative resource
(58) Field of Classification Search requirement size value that is less than or equal to the maxi-

CPC ettt GOG6F 2009/4557
USPC 709/226
See application file for complete search history.

VIRTUAL VIRTUAL
MACHINE MACHINE]

>
H
.

HOST 88 88

HYPERVISOR
20

VIRTUAL VIRTUAL
MACHINE] *** IMACHINE]

88 88

HYPERVISOR
80

mum resource capacity.

23 Claims, 6 Drawing Sheets

80

1 s L =

Vi CATALOGUE] [EQUVALENCE SET 1 |—{ VM LIST |
[nopELisT] [EQUIVALENGE SET 2 |—{VMLIST]

.
H
H

96
[EQUIVALENCE SET M- VM LIST |
82
9&\ /9}8 /gg

[VM CATALOGUE] [EQUIVALENCE SET 1| vM LIST |
[NODELST] [EQUIVALENCE SET2 —{vM LisT|

o
H
.

96

|EQUIVALENCE SET Ml VM LIST]

US 9,329,888 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0167083 Al* 6/2012 Suitccoovvvrnenn GO6F 11/0712

718/1

2014/0089508 Al* 3/2014 Hawver HO4L 67/38

709/226

2014/0173593 Al* 6/2014 Padalaetal. 718/1
OTHER PUBLICATIONS

“Optimal virtual machine placement across multiple cloud provid-
ers,” Services Computing Conference, 2009. APSCC 2009. IEEE
Asia-Pacific , pp. 103,110, Dec. 7-11, 2009 .*

“An Online Mechanism for Dynamic VM Provisioning and Alloca-
tion in Clouds,” Cloud Computing (CLOUD), 2012 IEEE S5th Inter-
national Conference on , pp. 253,260, Jun. 24-29, 2012.*

“Using the Multiple Knapsack Problem to Model the Problem of
Virtual Machine Allocation in Cloud Computing,” Computational
Science and Engineering (CSE), 2013 IEEE 16th International Con-
ference on , pp. 476,483, Dec. 3-5, 2013.*

Canali, Claudia, and Riccardo Lancellotti. “Automated clustering of
virtual machines based on correlation of resource usage.” Commu-
nications Software and Systems 8.4 (2012): 102-109.*

Zhang, et al. “Friendly Virtual Machines: Leveraging a Feedback-
Control Model for Application adaptation”. Proceedings of Virtual
Execution Environments (VEE), 2005, pp. 2-12.

* cited by examiner

US 9,329,888 B2

Sheet 1 of 6

May 3, 2016

U.S. Patent

Qi

¥

(2)amA3g
TYRMILXT

&

U LAY MHOMIIN

&

3

k4

{SIa0VALTI LN

Ol

2

A¥dSI]

L

& /
e

e

\tma

o
g

&

T

w

AHOY0

AHOWIN

¥

WyH

«\...5.\
gg

\\..\

8L

ki

LINGY
DNISSHOOMH

Aoy

HAAGHES WELSAS "I LNGWOO

\

v

L Old

U.S. Patent May 3, 2016 Sheet 2 of 6 US 9,329,888 B2

US 9,329,888 B2

Sheet 3 of 6

May 3, 2016

U.S. Patent

VA0S

HIAMIS ONDIMOMISN

FAYRLIOS NoY DY

SHHLSAS

iC

HiH

B e RAVALIOS ANV
e WEISAS SuAAMES
OECEIRENE LR . g THYMOMYH
onors @il O S PO o
09

NOLYIOTIY SOV 1Y T A
INIHOY SINENG w,mmﬂa.w.w fmﬁmad SAHOMIEN TOYHOLS
T MIA TWLEIA e TNLHA TWNLHIA

Frpoget T

LB

NGUVZITYILEIA
SHIANES
T9RLEA
&g

A
IR/ navaovn . SNl
Ny TS Tlaid NY
ONINNY I A Rl :
e ERINEDS

ONHE LN

INFWEDYNYIH
ONINGISIADY
FoAN053Y b

/

SOVOTIHOM

03

. AINTEQ 7 ANSIED YNGR e
s/ fonsszoond /f OSSO/ fouvonaa //ronoaanawy //A ST
. FUGON NOILOVSNVAL/ /1 ™ WOOUSSYIY/ / INAWAOTAA3G/ /[o e
= LY TUYMLA0S |
99

US 9,329,888 B2

Sheet 4 of 6

May 3, 2016

U.S. Patent

L LS WA Pl L3S 3ONTVAINDS

896

&
L4
?

v Old

LS WA b 2 L3S HONSTAINDE (4517 3GON

LLSP A B 1 L3S 3oNZTYAINDE [INS0TYIYO WA

06

HAOSINGDAAH

HHOMLIN
8

7 — /./. gy B
a5 ANIHOVI o 4s ENIHOVI
56 v6 WOLMAL | W0LEA
mm/,
| LSITNA T 138 SONTTYAIND 3|
- a8 o=
; HOSIANIAH
| LSITIWA =4 2 138 SONTWAINDY, |81 300N
LLSPTIA 1 | 138 3ONTTVAINDT, [3ND0TYIY0 WA - -
\\ -~ / INIHOYAL | . [SNIHOYA
58 \ 86 6 TOLMA WALHIA
08

L50H

U.S. Patent

May 3, 2016 Sheet 5 of 6

FIG. 5

RECEIVE EXECUTION
REQUESTS

¥

COMPILE AND/OR
ACCESS VM
CATALOGUE

¥

GROUP INDIVIDUAL VMs
INTO EQUIVALENCE SETS
BASED ON COMMON
RESOURCE REQUIREMENT(s)

k:

GENERATE META-COMBINATIONS
FOR EACH POSSIBLE
COMBINATION OF N
ELEMENTS IN EACH
EQUIVALENCE SET

¥

CONSTRAIN META-COMBINATION
LISTING BASED ON ARESOURCE
SIZE THRESHOLD, a.g.,
MAXIMUM RESOURCE
CAPACITY OF ANODE

3

GENERATE META-COMBINATION
ASSIGNMENT FOR EACH NODE

US 9,329,888 B2

104

108

U.S. Patent

May 3, 2016 Sheet 6 of 6

RECEIVE ANDYOR
GENERATE META-COMBINATION
ALSSIGNMENT(s) FOR ANODE

A

SELECT APPROPRIATE ViMs
FROM EQUIVALENCE LISTS
ASSOCIATED WITH EACH
META-COMBINATION

¥

UPDATE EQUIVALENCE LISTS

MIGRATE AND/OR ALLOCATE
SELECTED VMs TO THE NODE

US 9,329,888 B2

111

112

114

US 9,329,888 B2

1
COMPUTING OPTIMIZED VIRTUAL
MACHINE ALLOCATIONS USING
EQUIVALENCE COMBINATIONS

BACKGROUND

The present invention relates to management of virtual
machines (VMs), and more specifically, to methods and algo-
rithms for optimizing VM allocations.

A contemporary virtual machine (VM) is a software imple-
mentation of a machine (i.e., a computer) that executes pro-
grams like a physical machine. The VM typically emulates a
physical computing environment, but requests for central
processing unit (CPU), memory, hard disk, network and other
hardware resources are managed by a virtualization layer
which translates these requests to the underlying physical
hardware. VMs are created within a virtualization layer, such
as a hypervisor or a virtualization platform that runs on top of
a client or server operating system. The virtualization layer is
typically used to create many individual, isolated VMs within
a single, physical machine. Multiple VMs are typically used
in server consolidation, where different services that were
previously run on individual machines are instead run in
isolated VMs on the same physical machine.

A persistent challenge to providers of cloud hosting and
other network management services is the efficient use of
system resources. Efficient allocation of VMs to different
network nodes, e.g., network servers, is desired in order to
maximize the use of network resources and reduce the num-
ber of physical servers and/or physical resources required to
provide computing services to customers.

SUMMARY

According to one embodiment, a method for determining
allocation of virtual machines to network nodes includes: at
least one of generating and accessing a list of virtual machines
(VMs) configured to run on a network, each VM having at
least one network resource requirement, each VM in the list
associated with a size of the at least one network resource
requirement; selecting at least one equivalence set of VMs
having a resource requirement size that is at least substan-
tially identical; generating a plurality of meta-combinations
from the at least one equivalence set of VMs, each meta-
combination representing all possible combinations of a
selected number of individual VMs from the equivalence set;
determining a maximum resource capacity of a node in the
network; and providing a meta-combination assignment to
the node, the meta-combination assignment including a
group of meta-combinations having a cumulative resource
requirement size value that is less than or equal to the maxi-
mum resource capacity.

According to another embodiment, a computer program
product for determining allocation of virtual machines to
network nodes includes a computer readable storage medium
having program code embodied therewith. The program code
is readable/executable by a processor to perform a method
including: at least one of generating and accessing a list of
virtual machines (VMs) configured to run on a network, each
VM having at least one network resource requirement, each
VM in the list associated with a size of the at least one network
resource requirement; selecting at least one equivalence set of
VMs having a resource requirement size that is at least sub-
stantially identical; generating a plurality of meta-combina-
tions from the at least one equivalence set of VMs, each
meta-combination representing all possible combinations of
a selected number of individual VMs from the equivalence

40

45

55

2

set; determining a maximum resource capacity of a node in
the network; and providing a meta-combination assignment
to the node, the meta-combination assignment including a
group of meta-combinations having a cumulative resource
requirement size value that is less than or equal to the maxi-
mum resource capacity.

According to yet another embodiment, an apparatus
includes atleast one processing device disposed inat least one
of'a network node and a network control device and a storage
device having instructions stored thereon. When executed by
the at least one processing device, the instructions cause the
apparatus to: at least one of generate and access a list of
virtual machines (VMs) configured to run on a network, each
VM having at least one network resource requirement, each
VM in the list associated with a size of the at least one network
resource requirement; select at least one equivalence set of
VMs having a resource requirement size that is at least sub-
stantially identical; generate a plurality of meta-combinations
from the at least one equivalence set of VMs, each meta-
combination representing all possible combinations of a
selected number of individual VMs from the equivalence set;
determine a maximum resource capacity of a node in the
network; and provide a meta-combination assignment to the
node, the meta-combination assignment including a group of
meta-combinations having a cumulative resource require-
ment size value that is less than or equal to the maximum
resource capacity.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with the advantages and the
features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The foregoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1 depicts a cloud computing node according to an
embodiment of the present invention;

FIG. 2 depicts a cloud computing environment according
to an embodiment of the present invention;

FIG. 3 depicts abstraction model layers according to an
embodiment of the present invention;

FIG. 4 depicts an exemplary network computing system
including node processors configured to perform and/or
facilitate virtual machine (VM) allocation;

FIG. 5 is a flow chart showing a method of creating VM
allocation models or assignments for efficient allocation of
VMs to network nodes; and

FIG. 6 is a flow chart showing a method of allocating VMs
to selected network nodes.

DETAILED DESCRIPTION

Embodiments described herein are directed to methods,
apparatuses and computer program products for modeling
virtual machine (VM) allocations and packing or allocating
VMs to individual hosts or nodes within, e.g., a server or
peer-to-peer computer network. The embodiments described
herein are effective for many network applications, such as

US 9,329,888 B2

3

virtual machine infrastructures including those providing
TaaS, PaaS or SaaS cloud hosting.

For example, consolidator or VM management software
models VM allocations to hosts in order to simulate potential
cloud data center VM allocations. The software leverages
symbolic manipulation of VM equivalence classes (i.e., broad
sets of individual, concrete VMs which are effectively clones
with respect to consumption of one or more resources) to
provide for optimal allocation of VM.

In one embodiment, VMs available at run-time are grouped
into various equivalence sets, which are lists of VMs that have
at least substantially equivalent resource requirements. The
equivalence sets may be grouped relative to a single resource
type, such as memory requirements, or may be grouped rela-
tive to multiple resource types, such as memory and CPU core
number requirements. A plurality of meta-combinations are
generated for each equivalence set, each of which represents
all possible combinations of a selected number of VMs within
the respective equivalence set. The meta-combinations are
configured to represent a number of VMs from an equivalence
set without specifically enumerating individual concrete
instances of VMs within the set. The VM management soft-
ware may generate one or more meta-combination listings or
assignments for each node in a network, or at least for the
largest node in the network with respect to maximum
resource capacity. To generate the meta-combination
listing(s) or assignment(s), the software may, for example,
perform an algorithm (e.g., a greedy heuristic algorithm) to
select a group of meta-combinations having a cumulative
resource requirement that most optimally satisfies the
resource capacities of each node.

In one embodiment, a run-time satisfier or other applica-
tion utilizes the meta-combinations and/or meta-combination
assignments to allocate VMs to a node or nodes. For example,
lists of available or unallocated VMs may be associated with
equivalence classes and used to select and allocate VMs to a
node according to a corresponding meta-combination assign-
ment. Additional considerations, such as existing allocations
and migration overhead, may be employed in conjunction
with the meta-combination assignments to further optimize
allocations.

It is understood in advance that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to a
cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in con-
junction with any other type of computing environment now
known or later developed (e.g., any client-server model).

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be rap-
idly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilaterally
provision computing capabilities, such as server time and
network storage, as needed automatically without requiring
human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that pro-
mote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, laptops, and PDAs).

10

15

20

25

30

35

40

45

50

55

60

65

4

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer gener-
ally has no control or knowledge over the exact location of the
provided resources but may be able to specify location at a
higher level of abstraction (e.g., country, state, or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale out
and rapidly released to quickly scale in. To the consumer, the
capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capability
at some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to the
consumer is to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as a
web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to the
consumer is to deploy onto the cloud infrastructure con-
sumer-created or acquired applications created using pro-
gramming languages and tools supported by the provider. The
consumer does not manage or control the underlying cloud
infrastructure including networks, servers, operating sys-
tems, or storage, but has control over the deployed applica-
tions and possibly application hosting environment configu-
rations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer is to provision processing, storage, networks,
and other fundamental computing resources where the con-
sumer is able to deploy and run arbitrary software, which can
include operating systems and applications. The consumer
does not manage or control the underlying cloud infrastruc-
ture but has control over operating systems, storage, deployed
applications, and possibly limited control of select network-
ing components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely for
an organization. It may be managed by the organization or a
third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-pre-
mises or oft-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standardized

US 9,329,888 B2

5

or proprietary technology that enables data and application
portability (e.g., cloud bursting for load-balancing between
clouds).

A cloud computing environment is service oriented with a
focus on statelessness, low coupling, modularity, and seman-
tic interoperability. At the heart of cloud computing is an
infrastructure comprising a network of interconnected nodes.

Referring now to FIG. 1, a schematic of an example of a
cloud computing node is shown. Cloud computing node 10 is
only one example of a suitable cloud computing node and is
notintended to suggest any limitation as to the scope of use or
functionality of embodiments of the invention described
herein. Regardless, cloud computing node 10 is capable of
being implemented and/or performing any of the functional-
ity set forth hereinabove.

In cloud computing node 10 there is a computer system/
server 12, which is operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer systeny/server 12 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, hand-held or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer system/server 12 may be described in the gen-
eral context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12 may be prac-
ticed in distributed cloud computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
cloud computing environment, program modules may be
located in both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 1, computer system/server 12 in cloud
computing node 10 is shown in the form of a general-purpose
computing device. The components of computer system/
server 12 may include, but are not limited to, one or more
processors or processing units 16, a system memory 28, and
a bus 18 that couples various system components including
system memory 28 to processor 16.

Bus 18 represents one or more of any of several types of bus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
12, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28 can include computer system readable
media in the form of volatile memory, such as random access
memory (RAM) 30 and/or cache memory 32. Computer sys-
teny/server 12 may further include other removable/non-re-
movable, volatile/non-volatile computer system storage

10

15

20

25

30

35

40

45

50

55

60

65

6

media. By way of example only, storage system 34 can be
provided for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a“hard drive”). Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-
netic disk (e.g., a “floppy disk™), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM or other optical media
can be provided. In such instances, each can be connected to
bus 18 by one or more data media interfaces. As will be
further depicted and described below, memory 28 may
include atleast one program product having a set (e.g., at least
one) of program modules that are configured to carry out the
functions of embodiments of the invention.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of example,
and not limitation, as well as an operating system, one or more
application programs, other program modules, and program
data. Each of the operating system, one or more application
programs, other program modules, and program data or some
combination thereof, may include an implementation of a
networking environment. Program modules 42 generally
carry out the functions and/or methodologies of embodiments
of the invention as described herein.

Computer system/server 12 may also communicate with
one or more external devices 14 such as akeyboard, a pointing
device, a display 24, etc.; one or more devices that enable a
user to interact with computer system/server 12; and/or any
devices (e.g., network card, modem, etc.) that enable com-
puter system/server 12 to communicate with one or more
other computing devices. Such communication can occur via
1/O interfaces 22. Still yet, computer system/server 12 can
communicate with one or more networks such as a local area
network (LAN), a general wide area network (WAN), and/or
a public network (e.g., the Internet) via network adapter 20.
As depicted, network adapter 20 communicates with the other
components of computer system/server 12 via bus 18. It
should be understood that although not shown, other hard-
ware and/or software components could be used in conjunc-
tion with computer system/server 12. Examples, include, but
are not limited to: microcode, device drivers, redundant pro-
cessing units, external disk drive arrays, RAID systems, tape
drives, and data archival storage systems, etc.

Referring now to FIG. 2, an illustrative cloud computing
environment 50 is depicted. As shown, cloud computing envi-
ronment 50 comprises one or more cloud computing nodes 10
with which local computing devices used by cloud consum-
ers, such as, for example, personal digital assistant (PDA) or
cellular telephone 54 A, desktop computer 54B, laptop com-
puter 54C, and/or automobile computer system 54N may
communicate. Nodes 10 may communicate with one another.
They may be grouped (not shown) physically or virtually, in
one or more networks, such as Private, Community, Public, or
Hybrid clouds as described hereinabove, or a combination
thereof. This allows cloud computing environment 50 to offer
infrastructure, platforms and/or software as services for
which a cloud consumer does not need to maintain resources
on a local computing device. It is understood that the types of
computing devices 54 A-N shown in FIG. 2 are intended to be
illustrative only and that computing nodes 10 and cloud com-
puting environment 50 can communicate with any type of
computerized device over any type of network and/or net-
work addressable connection (e.g., using a web browser).

Referring now to FIG. 3, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG. 2)
is shown. It should be understood in advance that the compo-
nents, layers, and functions shown in F1G. 3 are intended to be

US 9,329,888 B2

7

illustrative only and embodiments of the invention are not
limited thereto. As depicted, the following layers and corre-
sponding functions are provided:

Hardware and software layer 60 includes hardware and
software components. Examples of hardware components
include mainframes, in one example IBM® zSeries® sys-
tems; RISC (Reduced Instruction Set Computer) architecture
based servers, in one example IBM pSeries® systems; IBM
xSeries® systems; IBM BladeCenter® systems; storage
devices; networks and networking components. Examples of
software components include network application server
software, in one example IBM WebSphere® application
server software; and database software, in one example IBM
DB2C® database software. (IBM, zSeries, pSeries, xSeries,
BladeCenter, WebSphere, and DB2 are trademarks of Inter-
national Business Machines Corporation registered in many
jurisdictions worldwide)

Virtualization layer 62 provides an abstraction layer from
which the following examples of virtual entities may be pro-
vided: virtual servers; virtual storage; virtual networks,
including virtual private networks; virtual applications and
operating systems; and virtual clients.

In one example, management layer 64 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security (not shown) pro-
vides identity verification for cloud consumers and tasks, as
well as protection for data and other resources. User portal
provides access to the cloud computing environment for con-
sumers and system administrators. Service level management
provides cloud computing resource allocation and manage-
ment such that required service levels are met. Service Level
Agreement (SLA) planning and fulfillment provides pre-ar-
rangement for, and procurement of, cloud computing
resources for which a future requirement is anticipated in
accordance with an SLA.

Workloads layer 66 provides examples of functionality for
which the cloud computing environment may be utilized.
Examples of workloads and functions which may be provided
from this layer include: mapping and navigation; software
development and lifecycle management; virtual classroom
education delivery; data analytics processing; transaction
processing; and a mobile desktop for mobile devices (e.g.,
54A, 54C, and 54N, as well as mobile nodes 10 in cloud
computing environment 50) accessing the cloud computing
services.

In one embodiment, one or both of the hardware and soft-
ware layer 60 and the virtualization layer 62 may include edge
components, such as a web server front end and image cache,
as well as an image library store, e.g., in a high-performance
RAID storage area network (SAN). In an exemplary embodi-
ment, an application, such as virtual machine allocation
application 70 in the virtualization layer 62, may implement
processes or methods for determining and/or performing vir-
tual machine allocations as described herein; however, it will
be understood that the application 70 may be implemented in
any layer.

FIG. 4 illustrates any exemplary computing system 80 that
incorporates a peer-to-peer and/or client/server network 82
such as a cloud computing network that includes multiple
hosts or nodes 84, such as servers. In exemplary embodi-
ments, each node 84 include a high-speed processing device

10

15

20

25

30

35

40

45

50

55

60

65

8

(e.g., a mainframe or server computer) including at least one
processing circuit (e.g., a CPU) capable of reading and
executing instructions, and handling numerous interaction
requests from user or client computers 86 as a shared physical
resource. Users can initiate various tasks on the nodes 84 via
the user computers 86, such as developing and executing
system tests, running application programs, and initiating a
system migration.

The network 82 may be any type of communications net-
work known in the art. For example, the network 82 may be an
intranet, extranet, or an internetwork, such as the Internet, or
a combination thereof. The network 82 can include wireless,
wired, and/or fiber optic links.

In exemplary embodiments, each node 84 accesses and
stores data in one or more associated data storage devices,
which may include any type of storage and may comprise a
secondary storage element, e.g., hard disk drive, tape, or a
storage subsystem that is internal or external to the node 84.
Types of data that may be stored in the source data storage
device include, for example, memory included in one or more
virtual machines (VMs) 88 and allocation and migration data
(e.g., data structures). In an exemplary embodiment, VM
configuration information and/or node memory access data is
also stored in the data storage device.

In exemplary embodiments, the node 84 executes various
applications, such as a node hypervisor 90 and multiple VMs
88. The term “hypervisor” refers to a low-level application
that supports the execution of one or more virtual machines.
Thehypervisor 90 manages access to resources of the node 84
and serves as a VM monitor to support concurrent execution
of the VMs. Each VM can support specific guest operating
systems and multiple user sessions for executing software
written to target the guest operating systems. For example,
one VM may support an instance of the Linux® operating
system, while a second VM executes an instance of the ZZOS®
operating system. Other guest operating systems known in
the art can also be supported by the source hypervisor 90
through the VMs.

In exemplary embodiments, the hypervisor or other appli-
cation in the node 84 executes a VM consolidator or manager
92 to perform processing described herein to determine opti-
mal allocation of VMs and migrate VMs to and/or between
various nodes 84. Various data structures, such as a VM
catalogue 94 that includes a listing of available VMs and a
node list 96 specifying all available nodes, may be stored and
utilized by the hypervisor 90 and/or manager 92 to facilitate
allocation of VMs. Additional exemplary data structures
include equivalence sets 98 and associated VM lists 99, which
are described in further detail below.

The systems and apparatuses described above, such as the
nodes 10 and/or nodes 84, or a centralized processing device,
may be used to perform and/or facilitate machine (e.g., VM)
migration and packing as described herein.

FIG. 5 illustrates a method 100 for creating VM allocation
models or assignments that allow for efficient allocation of
VMs to network nodes, e.g., host servers. The method 100
includes one or more stages 101-106 described herein. The
method 100 is described in conjunction with the system 80,
but is not so limited. The method 100 may be performed by
one or more processors or other devices capable of monitor-
ing and/or controlling VMs in a network environment, such as
a hypervisor or virtual machine manager (VMM). In one
embodiment, the method 100 includes the execution of all of
stages 101-106 in the order described. However, certain
stages may be omitted, stages may be added, or the order of
the stages changed.

US 9,329,888 B2

9

In the first stage 101, one or more nodes in a network, such
as a cloud computing network, receive various execution
requests from customer or client computers. For example, the
network 82 may receive various execution requests from user
computers 86.

Inthe second stage 102, a processor such as a hypervisor 90
compiles or accesses a group of VMs, e.g., from a VM cata-
logue 94 stored on the hypervisor’s server, that can be con-
figured to run in the servers or other nodes that make up a
network or working group. Each specific VM has multiple
resource requirements. Exemplary resource requirements
include memory size, number of CPU cores, networking
cumulative throughput required by the VM, network out-
bound and/or inbound throughput required by the VM, disk
cumulative throughput for the VM, disk inbound and/or out-
bound throughput for the VM, and others. Each resource
requirement may be considered a dimension that is used to
optimally allocate VMs to an individual server.

In the third stage 103, the VMs are grouped as elements of
one or more equivalence sets. Each equivalence set includes a
group of VMs that are identical or near-identical with respect
to one or more resource requirements. Such VMs listed in an
equivalence set may be referred to a “cloned VMs” or “VM
clones.” The VMs do not have to be entirely identical, but
rather identical from a resource size perspective, i.e., each
cloned VM has a resource requirement (e.g., memory) having
the same or substantially the same size. As described herein,
resource “size” refers to a metric value for the resource, such
as memory size, a number of CPU cores or processing or
throughput speed.

Multiple equivalence sets may be generated depending on
the number of different resource requirement sizes associated
with available VMs. For example, FI1G. 4 shows the manager
92 as accessing a number “M” of equivalence sets, which
correspond to the number of different resource sizes required.

In one embodiment, each VM clone in an equivalence set
has the same size requirement for a single resource type, or for
any number of resource types. The embodiments described
herein are not so limited, as any number or type of resource
requirement may be used to generate the equivalence set. For
example, an equivalence set may be generated for a group of
VMs having identical resource requirements including
memory space, number of cores and/or platform type. How-
ever, the equivalence set can be defined so that VMs that have
relatively minor differences in specified resource require-
ments can be considered to be part of the equivalence set.

For purposes of discussion, a non-limiting example is
described. In this example, from a group of VMs, three cloned
VMs (referred to as “A”, “B” and “C”) having equivalent
resource properties are identified. Each of A, B and C has a
128 MB RAM and two CPU cores. For these VMs, an equiva-
lence set named “SMALL” may be generated. Any suitable
designation or naming convention for the equivalence sets or
other data structures described herein may be used, as the
designations or naming conventions are not limited to those
described herein.

In the fourth stage 104, a plurality of meta-combinations
are generated or designated for each equivalence set. Each
“meta-combination” is a designation representing all possible
combinations of a selected number of VM elements within
the equivalence set.

For example, a data structure referred to herein as a meta-
combination listing or designation is first generated by creat-
ing a place holder for each equivalence set. Each placeholder
is provided to designate a meta-combination from a corre-
sponding equivalence set. It is noted that, because each VM in
the equivalence set is considered identical (at least relative to

20

25

30

40

45

50

10

resource requirements of interest), each meta-combination of
VMs can be seen as a number of VMs in the combination.
Thus, a meta-combination is generated for each possible
number of elements.

For example, for an equivalence set that includes a number
“N” of elements (i.e., individual VMs), the number of pos-
sible meta-combinations is the number of elements, i.e., N. To
illustrate, consider an equivalence set designated “SET” that
contains N elements. From this, N meta-combinations
“SETx” can be generated, where x=1,2 ... N.

For an exemplary equivalence set containing three distinct
VMs, N=3 and thus the number of meta-combinations is
three. The equivalence set listing includes a meta-combina-
tion that represents all possible combinations of each speci-
fied number of VMs within the equivalence set, e.g., a first
meta-combination has one VM and represents any single VM,
a second meta-combination represents any combination of
two VMs and a third meta-combination represents any com-
bination of three VMs.

Referring again to the exemplary group of VMs (A, B and
C) designated as the SMALL equivalence set, three meta-
combinations can be designated. Placeholders are thus gen-
erated for a first meta-combination “SMALIL1” representing
any single VM from the set, a second combination
“SMALIL2” representing any combination of two distinct
VMs from the set, and a third combination “SMALL3” rep-
resenting all three VMs from the set.

Based on the known resource requirements of each VM,
each meta-combination can be assigned a cumulative
resource requirement. The cumulative resource requirement
is determined by multiplying the number of VMs in a meta-
combination by the nominal size value of the resource
requirement(s).

For example, the resource requirements for each meta-
combination in the SMALL set are the number of VMs in the
meta-combination (i.e., the multiplier) times the nominal
value for the specific measured resource requirement of any
individual element in the named set. Thus, the resource
requirements for SMALLx1 (A, B or C) are 128 MB RAM
and 2 CPU cores, the resource requirements for SMALLx2
(any two of A, B and C) are 256 MB ram, and the resource
requirements for SMALLx3 (A, B and C) are 384 MB RAM
and 6 CPU cores.

Itis noted that each meta-combination, which includes VM
clones, represents all possible combinations of VMs in the
corresponding equivalence set without enumerating each VM
combination explicitly. This provides an effective way to
designate allocation of VMs, especially where the majority of
virtual machines are clones or copies of existing virtual
machines.

In the fifth stage 105, the meta-combination listing is con-
strained based on the resource capabilities of one or more
selected nodes. In one embodiment, the listing is constrained
by constructing only those meta-combinations or groups of
meta-combinations that have a cumulative resource require-
ment that is less than or equal to a selected per-dimension
threshold (where each dimension corresponds to a selected
resource type). In one embodiment, the selected threshold
corresponds to the maximum resource capacity (relative to
the resource types taken into account when constructing the
meta-combinations and equivalence sets) of one or more
nodes. Resource capacity relates to the resource capabilities
of a host, i.e., relates to the maximum size value of the
resource that the host is capable of supporting. In one embodi-
ment, the threshold is given as the maximum resource capac-
ity of the largest host on the network. For example, the cumu-
lative memory of a meta-combination (e.g., RAM

US 9,329,888 B2

11

consumption) is limited to be less than the desired RAM
overcommit factor times the maximum RAM in the largest
host on the network.

For example, all of the meta-combinations constructed
from the equivalence sets are considered, and all possible
combinations of those meta-combinations (i.e., meta-combi-
nation listings) which are smaller in size than the largest host
on the network are selected. Here “smaller in size” means that
the cumulative resource allocation of the meta-combination
for each selected dimension (such as network consumption,
CPU cores required, or memory allocation) must be less than
the respective maximum host value.

Any suitable algorithm may be used to select possible
meta-combinations and meta-combination listings having a
cumulative resource requirement that is less than or equal to
the maximum resource capacity or other threshold. For
example, an efficient list based algorithm is used to construct
each possible meta-combination and/or meta-combination
listing which is suitably small for a network based on the
largest host. The algorithm performs this construction in effi-
cient space and time by, e.g., using a scheme which expands
a triangular table that resembles the shape of computing Pas-
cal’s triangle.

In one embodiment, a list of nodes and their respective
resource capacities is generated to be used in assigning meta-
combination listings. The resource capacities of each node
are known, e.g., based on network interrogation and collec-
tion phases. At run-time, the list of hosts may be sorted from
largest to smallest, knowing each host’s capacity.

In the sixth stage 106, a meta-combination assignment is
generated for one or more selected nodes. In one embodi-
ment, a meta-combination assignment is generated for each
node on the network, or a subset of nodes (e.g., a workgroup).
The assignment for a node may be generated by the node’s
respective hypervisor, or by a central server or processor.

A suitable search algorithm is utilized to select the meta-
combination listing that is a best fit relative to the node’s
resource capacity. In one embodiment, a greedy search algo-
rithm selects the combination of meta-combinations which is
a multi-dimensional best fit for the node.

In one embodiment, the algorithm is used to select a meta-
combination for each of a plurality of nodes on the network.
For example, the largest unfilled or available node is selected
from the node list 96 and a meta-combination listing that is a
best fit for the node is selected and assigned to the node. This
selection is repeated for each subsequent node in the network,
proceeding through the node list 96 by selecting the next
largest node in the network.

For example, the largest unfilled host in the network is
selected and a meta-combination listing is selected. An initial
meta-combination listing selection is attempted by selecting a
single resource requirement type (or at least fewer than the
total number of resource requirement types that are equiva-
lent in each meta-combination of the listing). An exemplary
initial resource type is memory, which may be considered
alone as memory is the resource bottleneck which is most
quickly consumed from even large hosts. In situations where
two or more meta-combination listing options are equivalent
in memory requirements, the options may be sorted by which-
ever listing has meta-combinations with the fewest elements
(i.e., including meta-combination(s) made up of the largest
resource requirement size, and presumably harder to satisfy
on smaller hardware configurations which will be processed
later). In the case of a draw, this same approach can be
performed based on additional resource types, such as CPU

5

10

15

20

25

30

35

40

45

50

55

60

12

consumption, network consumption and others (using the
same approach of fewer meta-combinations acting as the tie
breaker).

The result is a meta-combination assignment to a node or
host. Recall that a meta-combination listing is not a specific,
or concrete, set of virtual machines to assign to the host, but
rather what the optimal combination of VM types or groups
should look like.

An exemplary meta-combination assignment is shown
below. In this example, a group of VMs is organized by
equivalence set relative to memory requirements. The VMs
have memory requirements ranging from 1 GB of RAM to 8
GB of RAM. Four equivalence sets are determined; a
“MICRO” set that includes all VMs having a memory
resource requirement of 1 GB, a “SMALL” set including
VMs requiring 2 GB, a “MEDIUM” set including VMs
requiring 4 GB, and a “LLARGE” set including VMs requiring
8 GB. For each equivalence set, a number of meta-combina-
tions are considered. For example, the SMALL set, which
includes an number N of VMs, corresponds to N meta-com-
binations SMALL 1, SMALL 2 ...SMALL N.

Using the algorithms described above, a meta-combination
listing selected from the possible meta-combinations is pro-
vided for a node having a memory capacity of 20 GB:

[(SMALL3:2x3),(MEDIUM1:4x1),(LARGE1:8x1),(MI-
CRO2:1x2)-20].

This meta-combination listing includes four meta-combi-
nations: a meta-combination including three elements from
the SMALL set (each element of SMALL uses 2 GB RAM,
yielding 6 GB RAM use for this meta-combination), one
element from the MEDIUM set (each element of MEDIUM
uses 4 GB RAM, yielding 4 GB RAM use for this meta-
combination), one element from the LARGE set (each ele-
ment of LARGE uses 8 GB RAM, yielding 8 GB RAM use
for this meta-combination), and two elements from the
MICRO set (each element of MICRO uses 1 GB RAM, yield-
ing 2 GB RAM use for this meta-combination). The trailing
tag -20 indicates the overall memory consumption of the
meta-combination listing (i.e., 20 GB).

The meta-combination listing may be generated as a
selected data structure, such as metadata for a host. An exem-
plary data structure is a part of an open virtualization format
(OVF) package, e.g., a virtual machine contract (VMC) in the
package.

In one embodiment, multiple meta-combination listings
are stored as a list that is accessible by a server hypervisor or
other processor that assigns VMs to a host. A sorted list of
meta-combination listings, with the most optimal meta-com-
bination listing first, is provided. For example, the above
meta-combination listing example would be first of a list or
group of meta-combination listings having a combined
memory requirement of 20 GB. The assigning processor need
only select the first available meta-combination listing as the
assignment, and select VMs from each equivalence set
according to each meta-combination.

FIG. 6 illustrates a method 110 for allocating VMs to
selected nodes, which may include migrating VMs and/or
packing VMs to the selected nodes. The method 110 includes
one or more stages 111-114 described herein. The method
110 is described in conjunction with the system 80, but is not
so limited. The method 110 may be performed by one or more
processors or other devices capable of monitoring and/or
controlling virtual machines in a network environment, such
as a hypervisor or virtual machine manager (VMM). In one
embodiment, the method 110 includes the execution of all of

US 9,329,888 B2

13

stages 111-114 in the order described. However, certain
stages may be omitted, stages may be added, or the order of
the stages changed.

In the first stage 111, a processor of a node, such as the
hypervisor 90 and/or VM manager 92, generates or receives
one or more meta-combination assignments for the node. The
meta-combination assignment includes one or more of the
meta-combination listings selected via the method 110.

In the second stage 112, the processor, at run-time,
accesses the meta-combination assignment and selects avail-
able VMs (e.g., concrete, discrete VM instances) that satisfy
each meta-combination in the assignment. In one embodi-
ment, the processor selects a meta-combination listing from a
list or group of listings.

For each meta-combination, the processor accesses a list of
VMs in an equivalence set list 96 associated with that meta-
combination. Available VMs from the equivalence set list 96
are selected for allocation and/or migration to the node.

Referring to the exemplary meta-combination assignment
described above, in that example, the manager 92 selects the
number of VMs for each equivalence set specified by the
meta-combinations. For example, three VMs are selected
from the SMALL set one VM is selected from the MEDIUM
set, one VM is selected from the LARGE set and two VMs are
selected from the MICRO set. Each equivalence set may be
appropriately ordered so that suitable available VMs can be
selected from the top of each list, thereby simplifying selec-
tion.

Any of various algorithms may be utilized to perform this
selection of VMs. For example, a hypervisor (e.g., at run-
time) can efficiently attempt to satisty the meta-combinations
in amodified Best Fit First search. This task is simplified, e.g.,
by maintaining one linked list, referred to as a “concrete
instance list” or VM list 99, per equivalence set 98 of unallo-
cated or unassigned concrete candidate elements (i.e., a spe-
cific VM instance) of that set. The hypervisor selects the first
N items from the list if N are available as per the meta-
combination specification.

In one embodiment, multiple meta-combination assign-
ments are provided for the node. The assignments may be
organized by desirability to allow the processor to select
another listing if the most optimal meta-combination assign-
ment cannot be filled. For example, if there are insufficient
concrete instances, the hypervisor may go up a step and select
the next most optimal meta-combination assignment and
attempt to satisfy that until there is a concrete satisfaction
found.

In one embodiment, at selection time, any VM candidate
selection can be checked against any additional criteria or
restrictions. For example, each listed VM may be checked so
as to not co-locate blacklisted virtual machine pairs, and may
preferentially place contract specified pairs of VMs.

In one embodiment, the listing or other data structure rep-
resenting available and allocated VMs (e.g., the VM cata-
logue 94 and/or VM lists 99) is maintained by dynamically
mapping existing allocations of VMs on nodes in a network.
In this embodiment, the method 110 includes comparing the
selected meta-combination assignment for a server or other
node to the existing allocation to determine whether existing
allocations match or otherwise satisfy the allocation pre-
scribed by the meta-combination assignment.

VM listings may be maintained to monitor VM allocations
during run-time. Each existing VM in the listing and/or map-
ping may be tagged with a notation that is identical or suffi-
ciently similar to the meta-combination notation so that re-
allocation of resources can be omitted if an exact match or

10

15

20

25

30

35

40

45

50

55

60

65

14

similarity to one of the prescription meta-combination allo-
cations is already is present on the network.

The dynamically updated VM listing or mapping may be
consulted during the selection stage to determine whether
existing allocated combinations of VMs are available that are
at least similar to optimal combinations represented by the
meta-combination assignment. For example, an algorithm is
used that selects existing close combinations of VMs by
determining the migration overhead to convert such existing
combinations it into an optimal allocation prescribed by the
meta-combination assignment. The migration overhead may
be determined by examining, e.g., the number of VMs which
would need to be evacuated from the node, plus the number of
VMs which would need to be imported along with the RAM
sizes of those virtual machines. These values allow one to
predict (based on known network bandwidth, and existing
throughput formulas) the time to optimal placement as well as
the duration of possible perturbation of the virtual machines
being migrated. This may allow the processor to make migra-
tion decisions which result in fewer perturbations of existing
virtual machines. The VM listings or mapping may also
include a specification for a given virtual machine or set of
virtual machines of relative gravity, by which those machines
tend not to be live migrated. Migration of these VMs can be
avoided, and other VMs in the list may be migrated to them
when dynamic re-balancing needs to occur.

In the third stage 113, the listing of available VMs is
updated to reflect already allocated or newly unavailable
VMs. For example, when concrete VMs from the VM cata-
logue and/or equivalence set listings 98 are allocated, they are
removed therefrom.

In the fourth stage 114, the selected VMs are allocated or
packed to the appropriate node. This may be accomplished by
migrating or moving the selected VMs from a storage location
or another node on the network.

Technical effects and benefits include providing for effi-
cient use of network resources by optimally allocating or
packing VMs to network nodes or hosts. For example, the
systems and apparatuses described herein allow for packing
virtual machines on to a minimum number of hosts to thereby
allow power savings and efficiencies, e.g., by disabling or
dynamically powering down some hosts. The methods
described herein can be performed within an acceptable time
frame to avoid delays in executing network requests.

Prior art methods do not allow for effective determination
of algorithms. For example, brute force methods are far too
slow to be feasible in cloud computing applications. Like-
wise, multithreaded algorithms proved to be too slow for
moderate to large cloud applications (e.g., more than about 30
VMs). Solving VM allocations in general is known to be an
NP-hard problem related to the knapsack problem as well as
other n-dimensional specified packing problems. Thus, com-
puting all possible packings of N virtual machines on H hosts
is NAH possible combinations, and even if computed in par-
allel with many threads is intractable for short runtimes (dy-
namic frequent reconsolidation). The embodiments
described herein provide methods for solving allocation
problems that address these issues and provide improved
heuristic solving techniques.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/

US 9,329,888 B2

15

or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiments were chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

Further, as will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method, or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in-
cluding firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod-
ule” or “system.” Furthermore, aspects of the present inven-
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav-
ing computer readable program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, radio
frequency (RF), etc., or any suitable combination of the fore-

going.

10

15

20

25

30

35

40

45

50

55

60

65

16

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical func-
tion(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow-
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the

US 9,329,888 B2

17

specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

The descriptions ofthe various embodiments of the present
invention have been presented for purposes of illustration, but
are not intended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to best explain the prin-
ciples of the embodiments, the practical application or tech-
nical improvement over technologies found in the market-
place, or to enable others of ordinary skill in the art to
understand the embodiments disclosed herein.

What is claimed is:

1. A method for determining allocation of virtual machines
to network nodes, comprising:

at least one of generating and accessing a list of virtual

machines (VMs) configured to run on a network, each
VM having at least one network resource requirement,
each VM in the list associated with a size of the at least
one network resource requirement;

selecting a plurality of equivalence sets of VMs, each

equivalence set including only VMs having an identical
resource requirement size;

generating a group of meta-combinations, each meta-com-

bination corresponding to a respective equivalence set of
the plurality of equivalence sets of VMs, each meta-
combination representing all possible combinations of
individual VMs from the respective equivalence set,
each meta-combination and each possible combination
representing a number of VMs without specifically enu-
merating individual VMs;

determining a maximum resource capacity of anode in the

network;

generating a meta-combination listing, wherein the meta-

combination listing includes one or more meta-combi-
nations selected from the group of meta-combinations,
the meta-combination listing representing a cumulative
resource requirement size that is less than or equal to the
maximum resource capacity, and

providing a meta-combination assignment to the node, the

meta-combination assignment including a list of meta-
combination listings, each list having the cumulative
resource requirement size and a having a different set of
meta-combination listings.

2. The method of claim 1, wherein selecting the at least one
equivalence set includes selecting at least a first equivalence
set of VMs having a first resource requirement size and a
second equivalence set having a second resource requirement
size that is different than the first resource requirement size.

3. The method of claim 2, wherein generating the plurality
of meta-combinations includes generating at least a first plu-
rality of meta-combinations from the first equivalence set and
a second plurality of meta-combinations from the second
equivalence set.

4. The method of claim 1, wherein providing the meta-
combination assignment includes generating a plurality of
groups of different meta-combinations and selecting the
group that is closest to the maximum resource capacity.

5. The method of claim 1, wherein providing the meta-
combination assignment includes selecting the group of
meta-combinations based on a greedy search algorithm to
find the group that represents a multi-dimensional best fit for
the node.

15

20

35

40

45

55

18

6. The method of claim 1, wherein providing the meta-
combination assignment includes generating a list of all pos-
sible groups of meta-combinations having a combined
resource requirement that is less than or equal to the maxi-
mum resource capacity.

7. The method of claim 1, wherein the network includes a
plurality of nodes, determining a maximum resource capacity
includes determining a maximum resource capacity of each
of'the plurality of nodes, and providing the meta-combination
assignment includes generating a plurality of meta-combina-
tion assignments and providing a meta-combination assign-
ment for each of the plurality of nodes.

8. The method of claim 1, wherein the network includes a
plurality of nodes, and the maximum resource capacity is the
maximum resource capacity of the largest node in the net-
work.

9. The method of claim 1, wherein the resource require-
ment is selected from at least one of memory size, number of
CPU cores, networking throughput required and disk
throughput required.

10. A computer program product for determining alloca-
tion of virtual machines to network nodes, the computer pro-
gram product comprising a non-transitory computer readable
storage medium having program code stored thereon, the
program code readable/executable by a processor to perform
a method comprising:

at least one of generating and accessing a list of virtual

machines (VMs) configured to run on a network, each
VM having at least one network resource requirement,
each VM in the list associated with a size of the at least
one network resource requirement;

selecting a plurality of equivalence sets of VMs, each

equivalence set including only VMs having an identical
resource requirement size;

generating a group of meta-combinations, each meta-com-

bination corresponding to a respective equivalence set of
the plurality of equivalence sets of VMs, each meta-
combination representing all possible combinations of
individual VMs from the respective equivalence set,
each meta-combination and each possible combination
representing a number of VMs without specifically enu-
merating individual VMs;

determining a maximum resource capacity of a node in the

network;

generating a meta-combination listing, wherein the meta-

combination listing includes one or more meta-combi-
nations selected from the group of meta-combinations,
the meta-combination listing representing a cumulative
resource requirement size that is less than or equal to the
maximum resource capacity; and

providing a meta-combination assignment to the node, the

meta-combination assignment including a list of meta-
combination listings, each list having the cumulative
resource requirement size and a having a different set of
meta-combination listing.

11. The computer program product of claim 10, wherein
selecting the at least one equivalence set includes selecting at
least a first equivalence set of VMs having a first resource
requirement size and a second equivalence set having a sec-
ond resource requirement size that is different than the first
resource requirement size.

12. The computer program product of claim 11, wherein
generating the plurality of meta-combinations includes gen-
erating at least a first plurality of meta-combinations from the
first equivalence set and a second plurality of meta-combina-
tions from the second equivalence set.

US 9,329,888 B2

19

13. The computer program product of claim 10, wherein
providing the meta-combination assignment includes gener-
ating a plurality of groups of different meta-combinations and
selecting the group that is closest to the maximum resource
capacity.

14. The computer program product of claim 10, wherein
providing the meta-combination assignment includes select-
ing the group of meta-combinations based on a greedy search
algorithm to find the group that represents a multi-dimen-
sional best fit for the node.

15. The computer program product of claim 10, wherein
providing the meta-combination assignment includes gener-
ating a list of all possible groups of meta-combinations hav-
ing a combined resource requirement that is less than or equal
to the maximum resource capacity.

16. The computer program product of claim 10, wherein
the network includes a plurality of nodes, and the maximum
resource capacity is the maximum resource capacity of the
largest node in the network.

17. An apparatus comprising:

at least one processing device disposed in at least one of a

network node and a network control device; and

a storage device having instructions stored thereon that,

when executed by the at least one processing device,
cause the apparatus to:

at least one of generate and access a list of virtual machines

(VMs) configured to run on a network, each VM having
at least one network resource requirement, each VM in
the list associated with a size of the at least one network
resource requirement;

select a plurality of equivalence sets of VMs, each equiva-

lence set including only VMs having an identical
resource requirement size;

generate a group of meta-combinations, each meta-combi-

nation corresponding to a respective equivalence set of
the plurality of equivalence sets of VMs, each meta-
combination representing all possible combinations of
individual VMs from the respective equivalence set,
each meta-combination and each possible combination
representing a number of VMs without specifically enu-
merating individual VMs;

10

15

20

25

30

35

40

20

determine a maximum resource capacity of a node in the

network;

generate a meta-combination listing, wherein the meta-

combination listing includes one or more meta-combi-
nations selected from the group of meta-combinations,
the meta-combination listing representing a cumulative
resource requirement size that is less than or equal to the
maximum resource capacity; and

provide a meta-combination assignment to the node, the

meta-combination assignment including a list of meta-
combination listings, each list having the cumulative
resource requirement size and a having different set of
meta-combination listings.

18. The apparatus of claim 17, wherein the apparatus is
configured to select the at least one equivalence set by select-
ing at least a first equivalence set of VMs having a first
resource requirement size and a second equivalence set hav-
ing a second resource requirement size that is different than
the first resource requirement size, and generating the plural-
ity of meta-combinations includes generating at least a first
plurality of meta-combinations from the first equivalence set
and a second plurality of meta-combinations from the second
equivalence set.

19. The apparatus of claim 17, wherein the apparatus is
configured to generate a plurality of groups of different meta-
combinations and select the group that is closest to the maxi-
mum resource capacity as the meta-combination assignment.

20. The apparatus of claim 17, wherein the apparatus is
configured to select the group of meta-combinations based on
a greedy search algorithm to find the group that represents a
multi-dimensional best fit for the node.

21. The apparatus of claim 17, wherein the apparatus is
configured to generate a list of all possible groups of meta-
combinations having a combined resource requirement that is
less than or equal to the maximum resource capacity.

22. The apparatus of claim 17, wherein the network
includes a plurality of nodes, and the maximum resource
capacity is the maximum resource capacity of the largest node
in the network.

23. The apparatus of claim 17, wherein the network is a
cloud computing network.

#* #* #* #* #*

